Hairpin structures formed by alpha satellite DNA of human centromeres are cleaved by human topoisomerase IIα

نویسندگان

  • Anette Thyssen Jonstrup
  • Tina Thomsen
  • Yong Wang
  • Birgitta R. Knudsen
  • Jørn Koch
  • Anni H. Andersen
چکیده

Although centromere function has been conserved through evolution, apparently no interspecies consensus DNA sequence exists. Instead, centromere DNA may be interconnected through the formation of certain DNA structures creating topological binding sites for centromeric proteins. DNA topoisomerase II is a protein, which is located at centromeres, and enzymatic topoisomerase II activity correlates with centromere activity in human cells. It is therefore possible that topoisomerase II recognizes and interacts with the alpha satellite DNA of human centromeres through an interaction with potential DNA structures formed solely at active centromeres. In the present study, human topoisomerase IIalpha-mediated cleavage at centromeric DNA sequences was examined in vitro. The investigation has revealed that the enzyme recognizes and cleaves a specific hairpin structure formed by alpha satellite DNA. The topoisomerase introduces a single-stranded break at the hairpin loop in a reaction, where DNA ligation is partly uncoupled from the cleavage reaction. A mutational analysis has revealed, which features of the hairpin are required for topoisomerease IIalpha-mediated cleavage. Based on this a model is discussed, where topoisomerase II interacts with two hairpins as a mediator of centromere cohesion.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bloom’s Syndrome and PICH Helicases Cooperate with Topoisomerase IIα in Centromere Disjunction before Anaphase

Centromeres are specialized chromosome domains that control chromosome segregation during mitosis, but little is known about the mechanisms underlying the maintenance of their integrity. Centromeric ultrafine anaphase bridges are physiological DNA structures thought to contain unresolved DNA catenations between the centromeres separating during anaphase. BLM and PICH helicases colocalize at the...

متن کامل

Chiral discrimination and writhe-dependent relaxation mechanism of human topoisomerase IIα.

BACKGROUND Human topoisomerase IIα unlinks catenated chromosomes and preferentially relaxes positive supercoils. RESULTS Supercoil chirality, twist density, and tension determine topoisomerase IIα relaxation rate and processivity. CONCLUSION Strand passage rate is determined by the efficiency of transfer segment capture that is modulated by the topoisomerase C-terminal domains. SIGNIFICAN...

متن کامل

RECQL5 cooperates with Topoisomerase II alpha in DNA decatenation and cell cycle progression

DNA decatenation mediated by Topoisomerase II is required to separate the interlinked sister chromatids post-replication. SGS1, a yeast homolog of the human RecQ family of helicases interacts with Topoisomerase II and plays a role in chromosome segregation, but this functional interaction has yet to be identified in higher organisms. Here, we report a physical and functional interaction of Topo...

متن کامل

SUMOylation of DNA topoisomerase IIα regulates histone H3 kinase Haspin and H3 phosphorylation in mitosis

DNA topoisomerase II (TOP2) plays a pivotal role in faithful chromosome separation through its strand-passaging activity that resolves tangled genomic DNA during mitosis. Additionally, TOP2 controls progression of mitosis by activating cell cycle checkpoints. Recent work showed that the enzymatically inert C-terminal domain (CTD) of TOP2 and its posttranslational modification are critical to th...

متن کامل

DNA topoisomerase IIα controls replication origin cluster licensing and firing time in Xenopus egg extracts

Sperm chromatin incubated in Xenopus egg extracts undergoes origin licensing and nuclear assembly before DNA replication. We found that depletion of DNA topoisomerase IIα (topo IIα), the sole topo II isozyme of eggs and its inhibition by ICRF-193, which clamps topo IIα around DNA have opposite effects on these processes. ICRF-193 slowed down replication origin cluster activation and fork progre...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 36  شماره 

صفحات  -

تاریخ انتشار 2008